Matrizes

Clique nas imagens para visualizar os vídeos


300 Segundos de Matemática


Definição de Matrizes, exercício de formação de uma matriz e descrição com tipos de matrizes.


Operações de igualdade e adição de matrizes.


Procedimento para multiplicação de um número real por uma matriz e também a multiplicação de matriz por matriz.


Multiplicação de uma matriz 3×2 por uma matriz 2×2.


Definição de determinantes e seu cálculo para matrizes de ordens 1, 2 e 3.


Explicação com exemplo numérico da regra de Sarrus.


Vídeos com resolução de exercícios sobre Matrizes


Exercício 1 – Tipo de Matrizes

Dê o tipo (formato) de cada uma das seguintes matrizes.

Exercício 2 – Elemento da Matriz

Em cada caso, determine o elemento se existir.

Exercício 3 – Lei de Formação da Matriz

Escreva a matriz A = aij = 3×2, em que aij = 3i – 2j.

Exercício 4 – Lei de Formação da Matriz

Determine a matriz B = bij 3x 2, sendo bij = 2 + i + j.


Exercício 5 – Lei de Formação da Matriz

Qual é a soma dos elementos da matriz.

Exercício 6 – Matriz Transposta

Em cada caso, obtenha a transposta da matriz dada.

Exercício 7 – Matriz Transposta

Seja A = 2i + 3j Escreva a Matriz transposta.

Exercício 8 – Elemento da Matriz

Qual é o elemento a46 da matriz A


Exercício 9 – Diagonais da Matriz

Seja a matriz A = aij 3x 3, em que aij = i * j. Forneça os elementos que pertencem às diagonais principal e secundária de A.

Exercício 10 – Representação de uma Matriz

Na matriz seguinte, estão representadas as quantidades de sorvetes de 1 bola e de 2 bolas comercializados no primeiro bimestre de um ano em uma sorveteria: Cada elemento aij dessa matriz representa o número de unidades do sorvete do tipo i (i = 1 representa uma bola e i = 2, duas bolas) vendidas no mês j (j = 1 representa janeiro e j = 2, fevereiro).

Exercício 11 – Distância entre Cidades

A matriz D seguinte representa as distâncias (em quilômetros) entre as cidades X, Y e Z. Cada elemento aij dessa matriz fornece a distância entre as cidades i e j, com {i, j} = {1, 2, 3}. Se a cidade X é representada pelo número 1, Y por 2 e Z por 3:

Exercício 12 – Elementos de uma Matriz

Dê a matriz A, em que o elemento segue a lei de formação.


Exercício 13 – Lei de Formação de uma Matriz
Seja A, em que seus elementos seguem a seguinte lei de formação.


Exercício 14 – Representação de Matrizes
O quadrangular final de um torneio pan-americano de futebol feminino reúne as seleções de Argentina, Brasil, Canadá e México, que jogam entre si no sistema “todos contra todos” uma única vez. Na matriz Q seguinte está representada a quantidade de gols que a seleção do país i marcou no jogo contra a seleção do país j,


Exercício 15 – Elementos de uma Matriz
Na tabela a seguir, estão representadas as quantidades de proteínas, colesterol, cálcio e carboidrato encontradas em alguns tipos de queijos. a) A essa tabela é possível associar uma matriz Qmxn? Quais são os valores de m e n?
b) Obtenha os valores de q23 e q31, explicando seus respectivos significados.
c) Danilo consome, semanalmente, duas porções de 500 g de queijo mozarela cada uma. Substituindo-o por queijo minas frescal, quantos miligramas a menos de colesterol ele terá ingerido ao fim de um ano? Considere o ano com 52 semanas.
d) Uma amostra de queijo parmesão apresenta mais ou menos que a metade de carboidratos presente em uma amostra de mesma massa de queijo frescal?


Exercício 16 – Traço de uma Matriz
Chama-se traço de uma matriz quadrada a soma dos elementos de sua diagonal principal.
a) Determine os traços de cada uma das matrizes seguintes:
b) Determine 0 menor que teta menor que 2pi, de modo que o traço da matriz M seja igual a 1.


Exercício 17 – Igualdade de Matrizes

Determine os números reais a, b, c, e d para que se tenha:

Exercício 18 – Igualdade de Matrizes

Determine x, y e z reais que satisfaçam

Exercício 19 – Igualdade de Matrizes

Em cada item determine, caso exista, o número m que satisfaz a igualdade.

Exercício 20 – Igualdade de Matrizes

Determine os números reais p e q de modo que as matrizes sejam iguais.


Exercício 21 – Igualdade de Matrizes

Determine os números reais a, b, c, d, e e f que tornam verdadeira a igualdade.

Exercício 22 – Matriz Simétrica

Uma matriz quadrada A é dita simétrica se A = At. Entre as matrizes seguintes, quais são simétricas?

Exercício 23 – Soma de Matrizes

Efetue a soma e subtração de Matrizes

Exercício 24 – Elementos da Soma de Matrizes

Elementos da soma de matrizes.


Exercício 25 – Equação Matricial

Resolva as seguintes equações matriciais.

Exercício 26 – Soma de Matrizes

As tabelas a seguir indicam o número de faltas de três alunos (A, B e C) em cinco disciplinas (Português, Matemática, Biologia, História e Física, representadas por suas iniciais), nos meses de março e abril.

Exercício 27 – Matriz Antissimétrica

Uma matriz quadrada A é dita antissimétrica se A = -At.

Exercício 28 – Equação Matricial

Determine a matriz X tal que:


Exercício 29 – Multiplicação de Número por Matriz

Dada a matriz A, obtenha as matrizes.

Exercício 30 – Operações com Matrizes

Sejam as matrizes A e B, determine as seguintes matrizes.

Exercício 31 – Equação Matricial

Resolva a equação matricial

Exercício 32 – Equação Matricial

Dadas as matrizes A e B, determine a matriz X que verifica a equação.


Exercício 33 – Equação Matricial

Determine a matriz X que satisfaz a equação.

Exercício 34 – Produto de Matrizes

Determine, se existirem, os produtos de matrizes.

Exercício 35 – Multiplicação de Matrizes

Sejam as matrizes A, B e C determine se existir:

Exercício 36 – Elemento de uma Matriz

Sejam as matrizes A, e B. Se C é a matriz produto AB, determine, se existirem, os elementos.


Exercício 37 – Elemento da Matriz

Sejam as matrizes A e B. Sendo C a matriz produto AB determine o elemento.

Exercício 38 – Matriz – Determine x e y

Determine x e y reais a fim de que:

Exercício 39 – Potência de Matrizes

Seja A uma matriz quadrada de ordem n.

Exercício 40 – Potência de Matrizes

Generalizando a definição dada no exercício anterior.


Exercício 41 – Determine o Valor de m

Sabendo que A e A², determine o valor de m.

Exercício 42 – Produto de Matrizes

A tabela abaixo mostra as notas obtidas pelos alunos A, B e C nas provas de Português, Matemática e conhecimentos gerais em um exame vestibular.

Exercício 43 – Equação Matricial

Resolva a equação matricial X.

Exercício 44 – Aplicação de Matrizes

Na festa junina organizada pelos alunos do Ensino Médio de um colégio, o sanduíche de “carne louca” e o hot dog (cachorro-quente) eram vendidos em três barracas I, II e III espalhadas pelo colégio.


Exercício 45 – Multiplicação de Matrizes

Sejam as matrizes A e B. Sabendo que A B = 0, determine os valores de x e y.

Exercício 46 – Comutação de Matrizes

Determine x e y reais a fim de que as matrizes comutem.

Exercício 47 – Comutação de Matrizes

Dê exemplos de matrizes quadradas de ordem 2 que comutam com a matriz.

Exercício 48 – Multiplicação de Matrizes

Um laboratório fabrica um antiácido efervescente em duas versões: tradicional e especial.


Exercício 49 – Equação Matricial

Resolva as seguintes equações matriciais.

Exercício 50 – Multiplicação de Matrizes

Uma dona de casa registrou, na tabela seguinte, as quantidades (em gramas) de frutas compradas em duas semanas consecutivas, em um mesmo supermercado:

Exercício 51 – Multiplicação de Matrizes

Na matriz A, a seguir, estão representadas as quantidades de cálcio e magnésio, em miligramas, encontradas em 100 g de algumas verduras:

Exercício 52 – Matriz Inversa

Verifique se a matriz A é inversa da matriz B.


Exercício 53 – Matriz Inversa

Determine, se existir, a inversa da matriz.

Exercício 54 – Matriz Inversa

Determine, se existe a matriz inversa.

Exercício 55 – Matriz Inversa

Para que valor(es) rea(is) de x a inversa da matriz A, é a própria matriz A?

Exercício 56 – Matriz Inversa

Sejam as matrizes A e B. Determine:


Exercício 57 – Determine x e y Reais para a Matriz Inversa
Determine x e y reais sabendo que a inversa da matriz A é a matriz A¹.


Exercício 58 – Determine o Valor de x para a Matriz Inversa
Sendo A, com x pertencente aos reais, determine os valores de x para os quais A + A¹ = I, sendo I a matriz identidade de ordem 2.


Exercício 59 – Matriz Inversa e Equação Matricial
Sejam as matrizes A e B:
a) Determine A inversa
b) Resolva a equação A * X = B


Exercício 60 – Determine a Inversa da Matriz de Ordem 3
Determine a inversa da matriz de ordem 3.


Exercício 61 – Determine a Matriz X cuja Inversa é igual a Matriz A
Dadas as matrizes A e B, determine a matriz X (quadrada de ordem 2) tal que (X * B) inversa = A