Capítulo

Tudo o que a Eletricidade nos proporciona baseia-se num fato muito simples: as cargas elétricas podem se mover ordenadamente.

> 5.1 A corrente elétrica

Nos condutores metálicos, a corrente elétrica é constituída pelo movimento ordenado de elétrons livres. Entretanto, por razões históricas, o sentido convencional da corrente elétrica é o sentido que teríamos se as cargas livres fossem positivas.

> 5.2 Circuito elétrico

O conjunto de aparelhos elétricos ligados de modo a estabelecer uma corrente elétrica constitui um circuito elétrico. Para a medida da intensidade de corrente aue percorre os elementos de um circuito utiliza-se um dispositivo chamado amperímetro.

> 5.3 Efeitos da corrente elétrica

Diferentes efeitos podem ser produzidos ao se estabelecer uma corrente elétrica. Os quatro principais efeitos são: fisiológico, térmico, químico e magnético.

> 5.4 Energia e potência da corrente elétrica

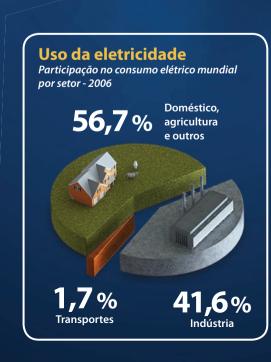
Para saber a quantidade de energia elétrica que um aparelho consome, devemos conhecer a potência elétrica do aparelho e o intervalo de tempo de funcionamento.

Corrente elétrica

Desigualdade energética

Como outros recursos essenciais para o desenvolvimento humano, a energia elétrica está concentrada em pouquíssimos países.

Dez maiores consumidores elétricos


Consumo por país, em bilhões de kWh - 2007

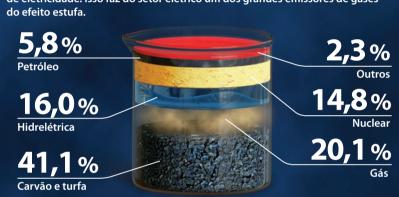
O mundo inteiro consumiu 17,7 trilhões de kWh em 2007. Deste total, 40% foram gastos por apenas dois países: Estados Unidos e China.

A semelhança é apenas aparente, já que a população estadunidense não chega a um quarto da chinesa.

530

Claro-escuro

Esses globos montados com fotos noturnas feitas por satélites mostram que a desigualdade no acesso à eletricidade é visível até do espaço.



A falta de eletricidade é um dos problemas que dificultam o desenvolvimento de regiões pobres, como a África, que reúne 15% da humanidade, mas consome apenas 3% da produção mundial de eletricidade.

De onde vem

Participação na geração elétrica mundial por fonte - 2006

Termoelétricas movidas a combustíveis fósseis são a principal fonte mundial de eletricidade. Isso faz do setor elétrico um dos grandes emissores de gases

Para pensar

- 1. As populações de China e EUA são de 1,3 bilhão e 300 milhões, respectivamente. Qual é o consumo de energia elétrica per capita anual dos dois países?
- 2. Com o consumo anual per capita estadunidense, quantas lâmpadas de 100 W ficariam acesas por 1 ano?

798

Minoria renovável

Participação de fontes renováveis na geração elétrica - 2007

Menos de 1/5 da eletricidade mundial vem de fontes renováveis. O Brasil é uma exceção, graças às hidrelétricas, consideradas fontes renováveis.

Na escuridão

População sem eletricidade, em milhões de pessoas - 2005

A ONU conta 1,6 bilhão de pessoas vivendo às escuras. A imensa maioria (80%), reside em regiões rurais.

Norte

da África

14

Médio

Oriente

América

46

Latina

extremo oriente

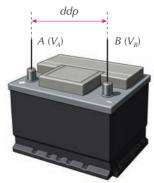
África subsaariana

Ásia

*Organização para a Cooperação e Desenvolvimento Econômico: Grupo formado por 30 dos países mais ricos do mundo

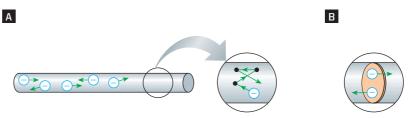
) Objetivos

- Definir corrente elétrica.
- Conceituar intensidade de corrente elétrica.
- ▶ Conhecer a unidade de medida de intensidade de corrente elétrica no SI.
- Conhecer o sentido convencional da corrente elétrica.


> Termos e conceitos

- gerador elétrico
- · corrente contínua
- · corrente alternada

A corrente elétrica

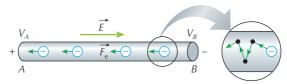

Considere um aparelho como o da **figura 1**, cuja função é manter entre seus terminais A e B uma diferença de potencial elétrico (ddp) expressa por $V_A - V_B$. Esse aparelho é chamado **gerador elétrico** e seus terminais A e B são denominados **polos**.

O polo positivo é o de maior potencial (V_A) . O polo negativo é o de menor potencial (V_B) .

➡ Figura 1. O gerador mantém entre os polos A e B uma ddp. A bateria utilizada em automóveis é um exemplo de gerador elétrico.

Considere, agora, um condutor metálico em equilíbrio eletrostático (fig. 2). Sabemos que os seus **elétrons livres** estão **em movimento desordenado**, com velocidades em todas as direções, porém sem saírem do condutor, não produzindo, portanto, efeito externo. Todos os pontos do condutor metálico em equilíbrio têm o mesmo potencial elétrico.

➡ Figura 2. (A) Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de um elétron livre em movimento desordenado. (B) O número de elétrons livres que atravessam a secção transversal do condutor em equilíbrio eletrostático, num certo intervalo de tempo, é igual nos dois sentidos.


Ligando-se esse condutor aos polos A e B do gerador elétrico, ele ficará submetido à ddp $V_A - V_B$, que origina, no interior do condutor, o campo elétrico \vec{E} , orientado do polo positivo para o polo negativo. Nesse campo elétrico, cada elétron fica sujeito a uma força elétrica $\vec{F}_{\rm e} = q\vec{E}$ (de sentido oposto ao do vetor \vec{E} , pois a carga elétrica do elétron é negativa).

Sob ação da força elétrica $\vec{F}_{\rm e}$, os elétrons livres alteram suas velocidades, adquirindo, na sua maioria, movimento ordenado, cuja velocidade média tem a direção e o sentido da força $\vec{F}_{\rm e}$ (fig. 3). Esse movimento ordenado de cargas elétricas constitui a corrente elétrica. É importante realçar que os elétrons livres, apesar de seu movimento ordenado, colidem continuamente com os átomos do material, seguindo trajetórias

Unidade B · Cargas elétricas em movimento

irregulares e com velocidades médias muito pequenas. Eles avançam no sentido da força elétrica, superpondo-se ao movimento caótico que resulta dos choques com os átomos do condutor (figura 3, no destaque).

ightharpoonup Figura 3. Ligando o condutor ao gerador, há uma ddp $V_A - V_B$ entre os terminais do condutor e o movimento dos elétrons é ordenado. Em destaque, a representação de um elétron livre avançando sob ação do campo elétrico.

O papel de grande importância que a Eletricidade desempenha na vida moderna baseia-se na corrente elétrica. A parte da Eletricidade que estuda a corrente elétrica e os efeitos produzidos pelo caminho por onde ela passa denomina-se **Eletrodinâmica**.

Entre na rede No endereço eletrônico http://www.edumediashare.com/media.php?id=1456 (acesso em junho/2009), você pode simular o movimento dos elétrons livres num condutor metálico, antes e após a aplicação de uma ddp entre os extremos do condutor.

Intensidade de corrente elétrica

Suponha um condutor metálico (**fig. 4**) ligado aos terminais de um gerador. Seja n o número de elétrons que atravessam a seção transversal desse condutor desde o instante t até o instante $t+\Delta t$. Como cada elétron apresenta, em módulo, a carga elementar e, no intervalo de tempo Δt passa por essa secção transversal uma carga elétrica cujo valor absoluto é dado por:

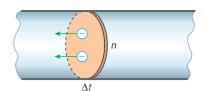


Figura 4. No intervalo de tempo Δt, n elétrons passam pela seção do condutor.

$$\Delta q=ne$$

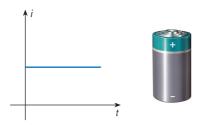
Define-se **intensidade média de corrente elétrica**, no intervalo de tempo t a $t+\Delta t$, como o quociente:

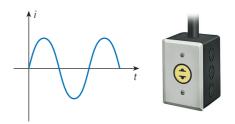
$$i_{\rm m} = \frac{\Delta q}{\Delta t}$$

Quando a corrente varia com o tempo, define-se **intensidade de corrente em um instante t** como sendo o limite para o qual tende a intensidade média, quando o intervalo de tempo Δt tende a zero:

$$i = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t}$$

Denominamos **corrente contínua constante** toda corrente de sentido e intensidade constantes com o tempo. Nesse caso, a intensidade média da corrente elétrica i_m em qualquer intervalo de tempo Δt é a mesma e, portanto, igual à intensidade i em qualquer instante t.


$$i_{\rm m}=i$$


A **figura 5** mostra o gráfico dessa corrente em função do tempo. Esse é o caso mais simples de corrente elétrica, com o qual iniciaremos o estudo de Eletrodinâmica.

A pilha mostrada ao lado do gráfico da figura 5 fornece corrente contínua.

Além da corrente contínua constante, é importante estudar a **corrente alternada***, que muda periodicamente de intensidade e de sentido (**fig. 6**). Os terminais das tomadas das residências fornecem uma corrente alternada de frequência 60 Hz (Hz = hertz = ciclos/segundo).

➡ Figura 5. A corrente contínua constante tem sentido e intensidade constantes com o tempo.

➡ Figura 6. A corrente alternada muda periodicamente no tempo. No caso da figura, a corrente alternada é senoidal.

Unidade de intensidade de corrente elétrica

A unidade de intensidade de corrente é a **unidade fundamental elétrica do Sistema Internacional de Unidades (SI)** e denominada **ampère** (símbolo **A**), em homenagem ao cientista francês André-Marie Ampère**. Essa unidade é definida por meio de um fenômeno eletromagnético, como veremos no capítulo 14.

Os principais submúltiplos do ampère são o **miliampère** (símbolo **mA**) e o **microampère** (símbolo μ **A**).

$$1 \text{ mA} = 10^{-3} \text{ A}$$
 e $1 \mu \text{A} = 10^{-6} \text{ A}$

Observação

A unidade de carga elétrica no SI, o coulomb (C), é definida a partir do ampère (A), por meio da fórmula $\Delta q=i\cdot\Delta t$. Realmente, fazendo i=1 A e $\Delta t=1$ s, teremos $\Delta q=1$ C. Assim, podemos escrever que 1 C =1 A $\cdot 1$ s (1 coulomb =1 ampère vezes 1 segundo).

Portanto:

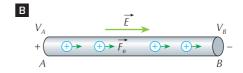
 $1\,\mathrm{C}$ é a carga elétrica que atravessa, durante $1\,\mathrm{s}$, a seção transversal de um condutor pelo qual flui uma corrente elétrica de intensidade $1\,\mathrm{A}$.

Sentido convencional da corrente elétrica

O sentido do movimento dos elétrons é oposto ao sentido do campo elétrico no interior do condutor metálico, pois: $\vec{F}_{\rm B} = q\vec{E}$ e q é negativo.

Contudo, por convenção:

O sentido da corrente elétrica é igual ao sentido do campo elétrico no interior do condutor.



^{*} Nocões de corrente alternada serão apresentadas no capítulo 16.

^{**} AMPÈRE, André-Marie (1775-1836), matemático e físico francês, lecionou Análise Matemática na Escola Politécnica de Paris. Com 45 anos interessou-se pela Eletricidade e, graças ao seu invejável senso matemático, conseguiu generalizar resultados experimentais particulares. Em 1826, elaborou a célebre "Teoria Matemática dos Fenômenos Eletrodinâmicos deduzidos unicamente da experiência".

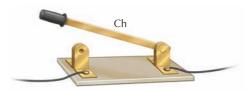
A corrente convencional pode então ser imaginada como se fosse constituída de cargas livres positivas em movimento (fig. 7B); assim, sempre que falarmos em sentido da corrente, estaremos nos referindo ao sentido do movimento dessas cargas. Portanto, ao mencionarmos corrente em um condutor, estaremos nos referindo à corrente convencional. Observe que a corrente convencional tem sentido contrário ao sentido real de movimento dos elétrons. No sentido convencional, a corrente elétrica entra no gerador pelo polo negativo e sai pelo polo positivo.

▲ Figura 7. (A) O sentido convencional da corrente elétrica é o sentido do campo elétrico. (B) O sentido convencional é o sentido que teríamos se as cargas elétricas livres fossem positivas.

Seção 5.2

) Objetivos

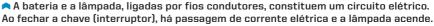
- Compreender o que é um circuito elétrico.
- Analisar um exemplo de circuito elétrico destacando seus elementos.
- ▶ Descrever como se procede para medir a intensidade de corrente elétrica que percorre os diversos elementos de um circuito elétrico.


> Termos e conceitos

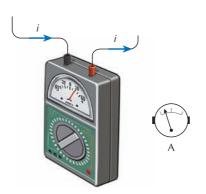
- amperímetro
- regra dos nós

Circuito elétrico

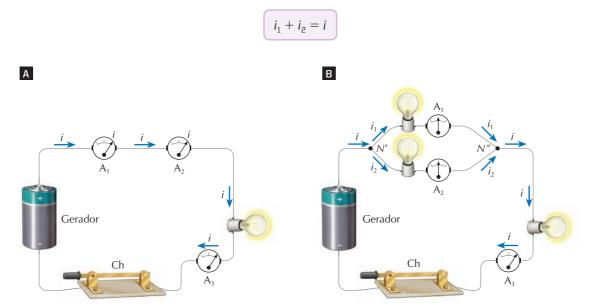
Denominamos **circuito elétrico** ao conjunto de aparelhos com os quais se pode estabelecer uma corrente elétrica, como o das fotos abaixo. O gerador é a parte interna do circuito; os demais aparelhos constituem o circuito externo.


Fechar um circuito é efetuar a ligação que permite a passagem da corrente elétrica; **abrir** um circuito é interromper essa corrente. Tais operações se efetuam, geralmente, por meio de uma **chave** (**fig. 8**).

➡ Figura 8. Chave Ch, para fechar ou abrir um circuito elétrico.



Medida da intensidade de corrente elétrica


Para medir a intensidade de uma corrente elétrica são construídos aparelhos geralmente denominados **amperímetros** (fig. 9). Esses aparelhos possuem dois terminais acessíveis e devem ser colocados no circuito de modo que a corrente a ser medida possa atravessar o medidor.

➡ Figura 9. Aparelho destinado a medir a intensidade de corrente. Ao lado dele temos um dos símbolos usados para representar um amperímetro no circuito.

No circuito elétrico da **figura 10A** existe apenas um caminho para a corrente que se quer medir. Verificamos que os amperímetros A_1 , A_2 e A_3 , colocados em diversos pontos do circuito, fornecem a mesma indicação *i*. Para circuitos que oferecem apenas um caminho para a corrente, **a intensidade de corrente é a mesma em todos os pontos**.

No circuito da **figura 10B**, entre os pontos N' e N'', temos dois trechos de circuito denominados **ramos** do circuito principal. Os pontos N' e N'', nos quais a corrente se divide, são chamados **nós** do circuito. Os amperímetros A_1 e A_2 estão colocados nos ramos e o amperímetro A_3 , no circuito principal. Com a chave Ch fechada, as intensidades são, respectivamente, i_1 , i_2 e i. As indicações dos amperímetros mostram que:

Considerando o nó N'', podemos enunciar a seguinte regra, conhecida como **regra dos nós**, que é válida para qualquer nó de um circuito:

Em um nó, a soma das intensidades de corrente que chegam é igual à soma das intensidades de corrente que saem.

Capítulo 5 · Corrente elétrica

EXERCÍCIOS RESOLVIDOS

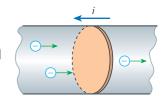
- **R. 38** Um fio metálico é percorrido por uma corrente elétrica contínua e constante. Sabe-se que uma carga elétrica de 32 C atravessa uma seção transversal do fio em 4,0 s. Sendo $e = 1,6 \cdot 10^{-19}$ C a carga elétrica elementar, determine:
 - a) a intensidade de corrente elétrica;
 - b) o número de elétrons que atravessa uma seção do condutor no referido intervalo de tempo.

Solução:

a) Sendo
$$\Delta q = 32$$
 C e $\Delta t = 4.0$ s, vem: $i = \frac{\Delta q}{\Delta t} \Rightarrow i = \frac{32}{4.0} \Rightarrow (i = 8.0 \text{ A})$

b) Sendo n o número de elétrons e e a carga elétrica elementar, temos:

$$\Delta q = ne \Rightarrow n = \frac{\Delta q}{e} \Rightarrow n = \frac{32}{1.6 \cdot 10^{-19}} \Rightarrow (n = 2,0 \cdot 10^{20} \text{ elétrons})$$


Resposta: a) 8,0 A; b) 2,0 · 10²⁰ elétrons

R. 39 É possível medir a passagem de $5,0 \cdot 10^2$ elétrons por segundo através de uma seção de um condutor com certo aparelho sensível. Sendo a carga elementar $1,6 \cdot 10^{-19}$ C, calcule a intensidade de corrente correspondente ao movimento.

Solução:

Em $\Delta t=1$ s, passam pela seção indicada em laranja na figura $n=5,0\cdot 10^2$ elétrons, cada qual dotado de carga $e=1,6\cdot 10^{-19}$ C.

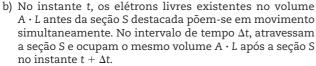
$$\text{Assim: } i = \frac{\Delta q}{\Delta t} = \frac{ne}{\Delta t} = \frac{5,0 \cdot 10^2 \cdot 1,6 \cdot 10^{-19}}{1} \ \Rightarrow \ i = 800 \cdot 10^{-19} \, A \ \Rightarrow \boxed{i = 8,0 \cdot 10^{-17} \, A}$$

Resposta: $8,0 \cdot 10^{-17} \text{ A}$

Observação:

No esquema da solução, observe o sentido da corrente convencional, que é contrário ao do movimento dos elétrons.

- **R. 40** Um fio de cobre, de área de seção transversal $5.0 \cdot 10^{-3}$ cm², é percorrido por uma corrente contínua de intensidade 1.0 A. Adotando a carga elementar $1.6 \cdot 10^{-19}$ C, determine:
 - a) o número de elétrons passando por uma seção transversal do condutor em 1,0 s;
 - b) a velocidade média dos elétrons, sabendo que existem 1,7 · 10²² elétrons livres/cm³.

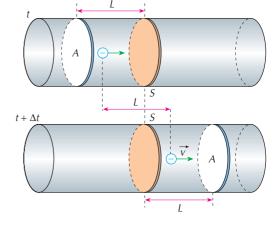

Solução:

a) Em $\Delta t = 1.0$ s passam n elétrons com carga de módulo $e = 1.6 \cdot 10^{-19}$ C pela seção S destacada.

Sendo
$$i = \frac{\Delta q}{\Delta t} = \frac{ne}{\Delta t}$$
, tem-se que: $n = \frac{i \cdot \Delta t}{e} \Rightarrow$

$$\Rightarrow n = \frac{i \cdot \Delta t}{e} \Rightarrow n = \frac{1,0 \cdot 1,0}{1.6 \cdot 10^{-19}} \Rightarrow$$

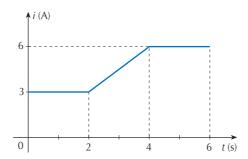
$$\Rightarrow \left(n = 6,25 \cdot 10^{18} \text{ elétrons}\right)$$


Cada elétron livre percorre a distância L no intervalo de tempo Δt e, portanto, a velocidade média de cada elétron

no volume será:
$$v = \frac{L}{\Delta t}$$
 ①

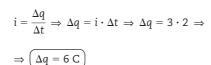
Sendo n o número de elétrons que atravessa S em Δt e N o número de elétrons por cm³, temos $n = N \cdot A \cdot L$.

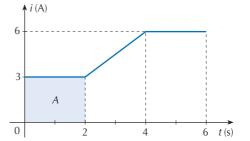
Como i =
$$\frac{\Delta q}{\Delta t} = \frac{ne}{\Delta t}$$
, segue: i = $\frac{N \cdot A \cdot L \cdot e}{\Delta t}$ ②


$$v = \frac{1.0}{1.7 \cdot 10^{22} \cdot 5.0 \cdot 10^{-3} \cdot 1.6 \cdot 10^{-19}} \Rightarrow v = 0.074 \text{ cm/s} \Rightarrow v = 0.74 \text{ mm/s}$$

Resposta: a) 6,25 · 10¹⁸ elétrons; b) 0,74 mm/s

Observação:


O resultado v=0.74 mm/s pode suscitar a seguinte questão: "Ao ligar a chave de um aparelho elétrico, ele começa a funcionar quase instantaneamente, embora possa estar a centenas de metros de distância. Como isso é possível, se a velocidade dos elétrons nos condutores é relativamente baixa?". A explicação é simples: os elétrons livres do condutor se põem em movimento simultaneamente em todo o circuito.


- R. 41 O gráfico representa a intensidade de corrente que percorre um condutor em função do tempo. Determine a carga elétrica que atravessa uma seção transversal do condutor entre os instantes:
 - a) 0 e 2 s
 - **b)** 2 e 4 s

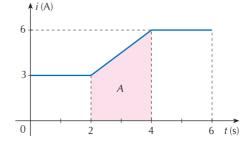
Solução:

 a) No intervalo de tempo de 0 a 2 s, a intensidade de corrente é constante e portanto coincide com a intensidade média. Desse modo, como i = 3 A e Δt = 2 s, temos:

Reprodução proibida. Art.184 do Código Penal e Lei 9.610 de 19 de fevereiro de 1998.

Observe que a carga elétrica $\Delta q=i\cdot\Delta t$ é numericamente igual à área do retângulo destacado no gráfico i em função de t:

$$A = 2 \cdot 3 = 6 \implies \boxed{\Delta q = 6 \text{ C}}$$


Observação:

Essa propriedade vale, também, quando a intensidade de corrente é variável. Isto é, no gráfico da intensidade de corrente instantânea em função do tempo, a área, num certo intervalo de tempo, é numericamente igual à carga elétrica que atravessa a seção transversal do condutor, nesse intervalo de tempo.

b) Nesse caso, não podemos usar a fórmula $\Delta q=i\cdot\Delta t$, pois i não é constante. Devemos determinar, a partir do cálculo da área do trapézio destacado no gráfico, o valor da carga elétrica.

$$A = \frac{(6+3)}{2} \cdot 2 = 9 \implies \boxed{\Delta q = 6 \text{ C}}$$

Resposta: a) 6 C; b) 9 C

EXERCÍCIOS PROPOSTOS

- P. 92 Através de uma seção transversal de um condutor, passam, da direita para a esquerda, 1,0 · 10²⁰ elétrons em 10 s.
 - Sendo a carga elementar $e=1,6\cdot 10^{-19}$ C, determine a intensidade de corrente que corresponde a esse movimento e indique seu sentido convencional.
- **P. 93** Um condutor é percorrido por uma corrente de intensidade 20 A. Calcule o número de elétrons por segundo que passam por uma seção transversal do condutor ($e = 1,6 \cdot 10^{-19}$ C).
- **P. 94** Um fio de cobre, de área de seção transversal $8,0\cdot 10^{-3}$ cm², é percorrido por uma corrente elétrica de 2,0 A. Determine a velocidade média dos elétrons que constituem a corrente elétrica, sabendo que existem $8,4\cdot 10^{22}$ elétrons livres/cm³. (A carga elétrica elementar vale: $e=1,6\cdot 10^{-19}$ C.)
- P. 95 Uma corrente elétrica de intensidade 10 A é mantida em um condutor metálico durante 4 min. Determine, para esse intervalo de tempo:

- a) a carga elétrica que atravessa uma seção do condutor;
- b) o número de elétrons que atravessam a referida secão.
- (A carga elétrica de um elétron tem valor absoluto de $1,6 \cdot 10^{-19}$ C.)
- P.96 O gráfico representa a intensidade de corrente que percorre um condutor em função do tempo. Determine a carga elétrica que atravessa uma seção transversal entre os instantes t = 1 s e t = 3 s.

Seção 5.3

) Objetivos

- Conhecer os principais efeitos da corrente elétrica.
- Analisar os valores da intensidade de corrente responsáveis pelos efeitos fisiológicos.
- ▶ Conhecer as aplicações práticas dos efeitos térmico, químico e magnético.

> Termos e conceitos

• choque elétrico
• efeito Joule
• efeito químico
• efeito magnético

Efeitos da corrente elétrica

A passagem da corrente elétrica através dos condutores acarreta diferentes efeitos, dependendo da natureza do condutor e da intensidade de corrente. É comum dizer que a corrente elétrica tem quatro efeitos principais: **fisiológico**, **térmico** (ou **Joule**), **químico** e **magnético**.

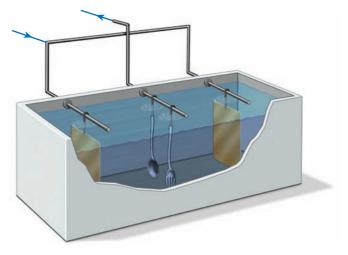
O **efeito fisiológico** corresponde à passagem da corrente elétrica por organismos vivos. A corrente elétrica age diretamente no sistema nervoso, provocando contrações musculares; quando isso ocorre, dizemos que houve um **choque elétrico** (fig. 11).

O pior caso de choque é aquele que se origina quando uma corrente elétrica entra pela mão de uma pessoa e sai pela outra. Nesse caso, atravessando o tórax de ponta a ponta, há grande chance de a corrente afetar o coração e a respiração.

O valor mínimo de intensidade de corrente que se pode perceber é 1 mA. Esse valor provoca sensação de cócegas ou formigamento leve. Entretanto, com uma corrente de intensidade 10 mA, a pessoa já perde o controle dos músculos, sendo difícil abrir a mão e livrar-se do contato.

Figura 11. Efeito fisiológico.

O valor mortal está compreendido entre 10 mA e 3 A, aproximadamente. Nessa faixa de valores, a corrente, atravessando o tórax, atinge o coração com intensidade suficiente para modificar seu ritmo. Modificado o ritmo, o coração para de bombear sangue para o corpo e a morte pode ocorrer em segundos. Se a intensidade for ainda mais alta, a corrente pode paralisar completamente o coração. Este se contrai ao máximo e mantém-se assim enquanto passa a corrente. Interrompida a corrente, geralmente o coração relaxa e pode começar a bater novamente, como se nada tivesse acontecido. Todavia, paralisado o coração, paralisa-se também a circulação sanguínea, e uma interrupção de poucos minutos dessa circulação pode provocar danos cerebrais irreversíveis.


O efeito térmico, também conhecido como efeito Joule, é causado pelo choque dos elétrons livres contra os átomos dos condutores. Ao receberem energia, os átomos vibram mais intensamente. Quanto maior for a vibração dos átomos, maior será a temperatura do condutor. Nessas condições observa-se, externamente, o aquecimento do condutor. Esse efeito é aproveitado com frequência em aquecedores, como o chuveiro da foto. (O revestimento da parte inferior foi retirado para deixar exposto o condutor enrolado em hélice, que é atravessado pela corrente.)

O **efeito químico** corresponde a determinadas reações químicas que ocorrem quando a corrente elétrica atravessa soluções eletrolíticas. É muito aplicado, por exemplo, no recobrimento de metais (niquelação, cromação, prateação etc.), ilustrado na **figura 12**.

O efeito magnético é aquele que se manifesta pela criação de um campo magnético na região em torno da corrente. A existência de um campo magnético em determinada região pode ser constatada com o uso de uma bússola: ocorrerá desvio de direção da agulha magnética (ímã, como mostrado na figura 13). Esse é um efeito muito importante da corrente elétrica e é abordado detalhadamente na parte 3 (Eletromagnetismo) deste livro.

▲ Num chuveiro, a passagem da corrente elétrica pela "resistência" provoca o efeito térmico ou efeito Joule, que aquece a água.

♠ Figura 12. Efeito químico.

♠ Figura 13. Efeito magnético.

Entre na rede
No endereço eletrônico http://www.eletropaulo.com.br (acesso em junho/2009), você encontra informações de como usar a energia elétrica de forma adequada (procure em Sua segurança; Evite acidentes).

Objetivos

- Relacionar o trabalho das forças elétricas com a variação da energia potencial elétrica num aparelho inserido num circuito elétrico.
 - Analisar os casos em que o aparelho elétrico consome energia e os casos em que ele fornece energia.
 - Caracterizar potência elétrica e energia elétrica consumida e fornecida.
- Conhecer as unidades de medida de potência e de energia elétrica.

> Termos e conceitos

 trabalho motor · trabalho resistente potência elétrica consumida potência elétrica fornecida

Energia e potência da corrente elétrica

Um aparelho elétrico é colocado entre dois pontos, A e B, de um trecho do circuito pelo qual passa a corrente convencional de intensidade i(fig. 14). Sejam V_A e V_B os respectivos potenciais elétricos desses pontos e chamemos de $U = V_A - V_B$ a ddp entre os pontos. O movimento das cargas elétricas só será possível se for mantida a ddp U entre A e B.

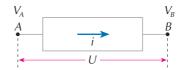


Figura 14. A ddp U deve ser mantida para que haja passagem da corrente i.

Chamemos Δq a **carga elétrica positiva** que, no intervalo de tempo Δt , atravessa esse trecho. No ponto A, a carga tem energia potencial elétrica $E_{p(A)} = \Delta q \cdot V_A$; ao chegar em B, ela tem energia potencial elétrica $E_{
m p(B)} = \Delta q \cdot V_{
m B}$. Quando a carga elétrica atravessa o trecho AB, o trabalho das forças elétricas é dado por:

$$Z_{AB} = \Delta q \cdot U = \Delta q \cdot (V_A - V_B) = \Delta q \cdot V_A - \Delta q \cdot V_B$$

Como $E_{o[A]} = \Delta q \cdot V_A$ e $E_{o[B]} = \Delta q \cdot V_B$, obtemos:

$$Z_{AB} = E_{p(A)} - E_{p(B)}$$

Devemos distinguir dois casos.

1° caso: $E_{n(A)} > E_{n(B)}$

Nesse caso, $V_{\rm A} > V_{\rm B}$. A energia elétrica da corrente diminui: **o movi**mento das cargas é espontâneo e o trabalho, motor. Essa energia elétrica consumida pelo trecho AB pode ter sido transformada em energia térmica, energia mecânica, energia química etc.

A **potência elétrica consumida** é dada por: $Pot = \frac{Z_{AB}}{\Lambda t}$. Mas, sendo $Z_{AB} = \Delta q \cdot U$, vem:

$$Pot = \frac{\Delta q \cdot U}{\Delta t}$$

Considerando que $\frac{\Delta q}{\Delta t} = i$, obtemos:

$$Pot = U \cdot i$$

Para chegarmos a essa fórmula, não foi necessário estabelecer nenhuma hipótese sobre a natureza das transformações que a energia elétrica sofre no trecho AB. Portanto, a fórmula é geral, podendo ser utilizada qualquer que seja o aparelho existente entre A e B.

A energia elétrica $E_{\rm el}$ consumida pelo aparelho existente entre A e B, num intervalo de tempo Δt , é dada pelo trabalho das forças elétricas:

$$Z_{AB} = Pot \cdot \Delta t \implies E_{el.} = Pot \cdot \Delta t$$

2° caso: $E_{p(A)} < E_{p(B)}$

Nesse caso, $V_A < V_B$. A energia elétrica da corrente aumenta: **o movimento das cargas é forçado e o trabalho, resistente**. Essa energia elétrica é fornecida pelo trecho de circuito AB à custa de outra forma de energia. É o caso do **gerador elétrico**.

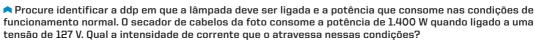
A energia elétrica $E_{\rm el}$ é, portanto, fornecida pelo gerador, a partir de um outro tipo de energia. Nas pilhas comuns, é a energia química que se converte na energia elétrica fornecida ao circuito.

A fórmula $Pot = U \cdot i$ representa, nessas condições, a **potência elétrica fornecida pelo gerador**. U é a ddp no gerador e i, a intensidade de corrente que o atravessa.

Unidades de energia e potência elétrica

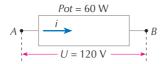
Recordemos as unidades: Pot em watt (W), U em volt (V) e i em ampère (A).

Os aparelhos elétricos trazem gravados a potência elétrica que eles consomem, bem como o valor da ddp a que devem ser ligados. Assim, um aparelho que traz a inscrição (60~W-120~V) consome a potência elétrica de 60~W, quando ligado entre dois pontos que apresentam uma ddp de 120~V.


Em Eletricidade mede-se também a potência em quilowatt $(1 \, \text{kW} = 10^3 \, \text{W})$ e a energia elétrica em quilowatt-hora (kWh). A quantidade de energia trocada no intervalo de tempo de $1 \, \text{h}$ com potência de $1 \, \text{kW}$ é $1 \, \text{kWh}$. Portanto:

$$1 \text{ kWh} = 1 \text{ kW} \cdot 1 \text{ h} = 1.000 \text{ W} \cdot 3.600 \text{ s} \implies 1 \text{ kWh} = 3.6 \cdot 10^6 \text{ J}$$

Resumindo, temos:


$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

EXERCÍCIOS RESOLVIDOS

- R. 42 Um aparelho elétrico alimentado sob ddp de 120 V consome uma potência de 60 W. Calcule:
 - a) a intensidade de corrente que percorre o aparelho;
 - b) a energia elétrica que ele consome em 8 h, expressa em kWh.

Solução:

a) A potência elétrica é dada por:

Pot =
$$U \cdot i \Rightarrow 60 = 120 \cdot i \Rightarrow (i = 0.5 \text{ A})$$

b) Sendo Pot = $60~W=60 \cdot 10^{-3}~kW$ e $\Delta t=8~h$, a energia elétrica, dada pelo trabalho das forças elétricas entre A e B, será:

$$\begin{split} E_{el.} &= Pot \cdot \Delta t = 60 \cdot 10^{-3} \cdot 8 \ \Rightarrow \\ &\Rightarrow E_{el.} = 480 \cdot 10^{-3} \ kWh \ \Rightarrow \boxed{E_{el.} = 0,48 \ kWh} \end{split}$$

Resposta: a) 0,5 A; b) 0,48 kWh

R. 43 Em um aparelho elétrico ligado corretamente lê-se a inscrição (480 W — 120 V). Sendo a carga elementar $1,6 \cdot 10^{-19}$ C, calcule o número de elétrons que passarão por uma seção transversal do aparelho em 1 s.

Solução:

A inscrição do aparelho nos fornece Pot = 480 W e U = 120 V.

$$U = 120 \text{ V}$$
 $Pot = 480 \text{ W}$
 $A = (480 \text{ W} - 120 \text{ V})$

Como Pot = $U \cdot i$, temos: $480 = 120i \Rightarrow i = 4 \text{ A}$

Sendo
$$i = \frac{\Delta q}{\Delta t}$$
, vem:

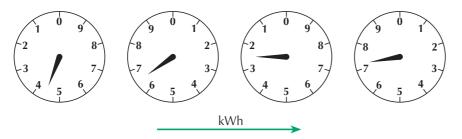
$$i = \frac{ne}{\Delta t} \Rightarrow n = \frac{i \cdot \Delta t}{e} \Rightarrow n = \frac{4 \cdot 1}{1,6 \cdot 10^{-19}} \Rightarrow$$

 $\Rightarrow (n = 2,5 \cdot 10^{19} \text{ elétrons})$

Resposta: 2,5 · 10¹⁹ elétrons

EXERCÍCIOS PROPOSTOS

- P. 97 Em um chuveiro elétrico, a ddp em seus terminais vale 220 V e a corrente que o atravessa tem intensidade 10 A. Qual a potência elétrica consumida pelo chuveiro?
- m P.98 Em um aparelho elétrico lê-se: 600 W 120 V. Estando o aparelho ligado corretamente, calcule:
 - a) a intensidade de corrente que o atravessa;
 - b) a energia elétrica (em kWh) consumida em 5 h.


123

O relógio da luz

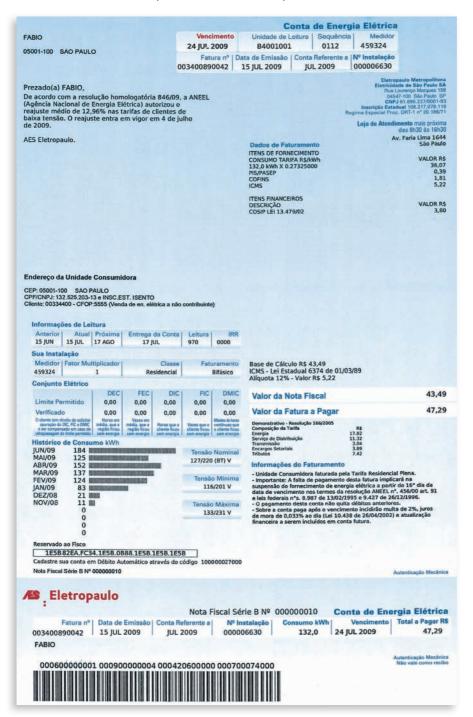
O que comumente chamamos de **relógio da luz** é na verdade um medidor da energia elétrica consumida no local onde é instalado. Na foto, é mostrado um desses medidores. Procure o "relógio da luz" de sua casa e compare-o com o da foto. Um disco horizontal gira quando há consumo de energia elétrica; quanto maior o consumo de energia, mais rapidamente gira o disco. Ao girar, esse disco aciona, por um sistema de engrenagens, os "reloginhos" situados na parte superior do medidor.

Ao fazer a leitura, leem-se os reloginhos da esquerda para a direita. A leitura corresponde sempre ao último número ultrapassado pelo ponteiro no seu sentido de rotação. Observe que o 1º e o 3º relógios giram no sentido anti-horário, enquanto o 2º e o 4º giram no sentido horário. Por exemplo, suponhamos que, num dado instante, os reloginhos apresentem o seguinte aspecto:

A leitura seria então: 4.627 kWh

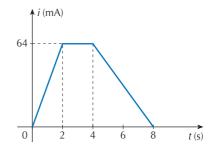
Essa leitura em si não tem maior significado. O que interessa é a **diferença** entre duas leituras consecutivas, a qual indica o consumo. Geralmente as leituras são feitas no intervalo de um mês; desse modo, a diferença entre as leituras indicará consumo mensal naquela instalação. Por exemplo, se a leitura acima foi feita no dia 2 de outubro, e a leitura efetuada um mês depois, em 2 de novembro, foi de 5.273 kWh, o consumo no período corresponde à diferença:

 $consumo = 5.273 - 4.627 \implies consumo = 646 \text{ kWh}$



A conta de luz

A conta de energia elétrica, usualmente chamada "conta de luz", é um demonstrativo da energia elétrica fornecida à instalação num certo período de tempo, geralmente um mês. O consumo, medido pela diferença de leituras discutida anteriormente, é expresso em quilowatts-hora (kWh).


Observe o preço do kWh e os impostos que incidem sobre a conta: o ICMS (Imposto sobre Circulação de Mercadorias e Serviços), o COSIP (Contribuição para o Custeio do Serviço de Iluminação Pública), o PIS/PASEP (Programa de Integração Social/Programa de Formação do Patrimônio do Servidor Público) e o COFINS (Contribuição Social para o Financiamento da Seguridade Social). Em "Histórico de Consumo" é possível analisar o consumo de energia elétrica nos diversos meses que antecedem o mês a que a conta se refere.

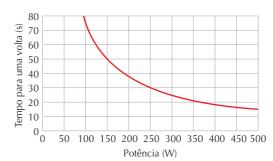
PROPOSTOS DE RECAPITULAÇÃO

- P. 99 Um fio percorrido por uma corrente de 1,0 A deve conduzir, através de uma seção transversal, uma carga de 3,6 C. Qual o intervalo de tempo necessário para que isso ocorra?
- P. 100 (IME-RJ) A intensidade da corrente elétrica em um condutor metálico varia, com o tempo, de acordo com o gráfico ao lado. Sendo a carga elementar $e = 1,6 \cdot 10^{-19}$ C, determine:
 - a) a carga elétrica que atravessa uma seção do condutor em 8 s;
 - b) o número de elétrons que atravessa uma seção do condutor durante esse mesmo tempo;
 - c) a intensidade média de corrente entre os instantes zero e 8 s.

- P. 101 (UFG-GO) As cargas e os tempos de duração das baterias de 6 V, para um certo tipo de telefone celular, são dados na tabela ao lado.
 - a) Qual a quantidade de carga (em coulombs) fornecida pela bateria de 0,80 Ah?
 - b) Calcule a intensidade média da corrente elétrica e a potência média fornecidas pela bateria de 0,80 Ah.

carga (Ah)	tempo (min)
0,30	40
0,38	50
0,55	70
0,80	110
1,10	150

P. 102 (Vunesp) Um aparelho elétrico para ser ligado no acendedor de cigarros de automóveis, comercializado nas ruas de São Paulo, traz a seguinte instrução:


Tensão de alimentação: 12 W Potência consumida: 180 V

Essa instrução foi escrita por um fabricante com bons conhecimentos práticos, mas descuidado quanto ao significado e uso corretos das unidades do SI (Sistema Internacional), adotado no Brasil.

- a) Reescreva a instrução, usando corretamente as unidades de medida do SI.
- b) Calcule a intensidade da corrente elétrica utilizada pelo aparelho.
- P. 103 (Vunesp) Normalmente, os aparelhos elétricos têm um manual de instruções ou uma plaqueta que informam a potência que absorvem da rede elétrica para funcionar. Porém, se essa informação não estiver disponível, é possível obtê-la usando o medidor de energia elétrica da entrada da residência. Além de mostradores que permitem a leitura do consumo de cada mês, o medidor tem um disco que gira quando a energia elétrica está sendo consumida. Quanto mais energia se consome, mais rápido gira o disco.

Usando esse medidor, um estudante procedeu da seguinte forma para descobrir a potência elétrica de um aparelho que possuía.

- · Inicialmente, desconectou todos os aparelhos das tomadas e apagou todas as luzes, e o disco cessou de girar.
- Em seguida, ligou apenas uma lâmpada de potência conhecida e mediu o tempo que o disco levou para dar uma volta completa.
- · Prosseguindo, ligou ao mesmo tempo duas, depois três, depois quatro, ... lâmpadas conhecidas, repetindo o procedimento da medida. A partir dos dados obtidos, construiu o gráfico do tempo gasto pelo disco para dar uma volta completa em função da potência absorvida da rede, mostrado na figura.
- Finalmente, ligando apenas o aparelho cuja potência desejava conhecer, observou que o disco levava aproximadamente 30 s para dar uma volta completa.

- a) Qual a potência do aparelho?
- b) O tempo gasto pelo disco e a potência absorvida são grandezas diretamente proporcionais ou inversamente proporcionais? Justifique sua resposta.

- P.104 Sabendo-se que 20 lâmpadas de 100 watts e 10 de 200 watts permanecem acesas 5 horas por dia, pergunta-se: qual o consumo de energia elétrica, em kWh, no período de 30 dias?
- P. 105 (Fuvest-SP) Um kWh é a energia consumida por um aparelho de 1.000 W funcionando durante uma hora. Considere uma torneira elétrica com potência de 2.000 W.
 - a) Supondo que o preço de 1 kWh de energia elétrica seja R\$ 0,20, qual o gasto mensal da torneira funcionando meia hora por dia?
 - b) Qual a energia, em joules, consumida pela torneira em 1 min?
- P. 106 Um chuveiro elétrico tem potência de 3.000 W e uma lâmpada incandescente tem potência de 60 W. Quanto tempo a lâmpada deve ficar ligada para consumir a mesma energia que o chuveiro, durante um banho de 20 minutos?
- P. 107 (PUC-SP) O que consome mais energia elétrica: um banho de 30 minutos com um chuveiro elétrico de potência 5.000 W ou uma lâmpada de 60 W que permanece ligada 24 horas? Justifique.
- P. 108 (Unicamp-SP) Quando o alumínio é produzido a partir da bauxita, o gasto de energia para produzi-lo é de 15 kWh/kg. Já para o alumínio reciclado a partir de latinhas, o gasto de energia é de apenas 5% do gasto a partir da bauxita.
 - a) Em uma dada cidade, 50.000 latinhas são recicladas por dia. Quanto de energia elétrica é poupada nessa cidade (em kWh)? Considere que a massa de cada latinha é de 16 g.
 - b) Um forno de redução de alumínio produz 400 kg do metal, a partir da bauxita, em um período de 10 horas. A cuba eletrolítica desse forno é alimentada com uma tensão de 40 V. Qual a corrente que alimenta a cuba durante a produção? Despreze as perdas.