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 Semelhança

Cada uma das figuras apresenta, em escalas diferentes, um mapa contendo o nome de algumas capitais 

brasileiras.

Vamos relacionar elementos da figura A com seus correspondentes da figura B e apresentar alguns 

conceitos importantes.

•	Medindo a distância entre duas cidades quaisquer na figura A e a correspondente distância na figura 

B, observamos que a primeira mede o dobro da segunda.

•	Ao medir um ângulo qualquer em uma das figuras e seu correspondente na outra, obteremos a 

mesma medida.

Por exemplo, ao medir a distância entre Belo Horizonte e Fortaleza na figura A, obtemos d
1
 5 46 mm. 

Na figura B, a distância que separa essas duas capitais é d'
1
 5 23 mm.

Entre o Rio de Janeiro e Salvador, temos, em A, d
2
 5 30 mm e, em B, d'

2
 5 15 mm.

Generalizando, para essas duas figuras, temos: d
i
 5 2d'

i 
.

Z
A

P
T

Brasil: algumas capitais

Z
A

P
T

figura A

 Brasil: algumas capitais

Fonte: Atlas geográfico escolar. 6a ed. Rio de Janeiro: IBGE, 2012. p. 90.
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Isso nos garante que existe uma constante de proporcionalidade, k, entre as medidas dos com-

primentos na figura A e seus correspondentes comprimentos na figura B; no caso, k 5 
d

i

d'
i

 5 2. Essa 

constante chama-se razão de semelhança.

Vamos estudar agora a parte angular: tanto na figura A como na B, o ângulo assinalado com vértice em Belém 

mede 93°. Da mesma forma que, nas duas figuras, cada ângulo assinalado com vértice na capital federal tem 76°.

Os ângulos indicam a “forma” da figura, que se mantém quando a ampliamos ou reduzimos. O que 

se modifica nesses casos é apenas as medidas dos segmentos de reta.

Como essas duas condições (medidas lineares proporcionais e medidas angulares congruentes) são 

satisfeitas, dizemos que as duas figuras são semelhantes.

1 cm

3 cm

Dois quadrados quaisquer são semelhantes.

1  2

A razão de semelhança entre os quadrados 1  e 2  é:
1 cm

3 cm
 5 

1

3

Poderíamos também ter calculado a razão de semelhança entre os quadrados 2  e 1 , nessa 

ordem, obtendo 
3 cm

1 cm
 5 3, que é o inverso de 

1

3
.

EXEMPLO 1

3 cm

2 cm

Dois círculos quaisquer são semelhantes.

1  2

A razão de semelhança entre os círculos 1  e 2  pode ser determinada pela razão entre as me-

didas dos raios, que é 3 cm

2 cm
 5 1,5.

Observe que a razão entre as medidas de seus diâmetros é, também, 
6 cm

4 cm
 5 

3

2
 5 1,5.

EXEMPLO 2

Por exemplo, um retângulo ABCD com lados medindo 2 cm e 6 cm e 

um retângulo EFGH com lados medindo 8 cm e 10 cm, pois 2
8

 8 6
10

.

1,5 cm

5 cm

2 cm

0,6 cm

EXEMPLO 3

Dois retângulos serão semelhantes somente se a razão entre as medidas de seus lados maiores 

for igual à razão entre as medidas de seus lados menores.

1  2

A razão de semelhança entre os retângulos 1  e 2  é 
5 cm

2 cm
 5 

1,5 cm

0,6 cm
 5 2,5.

Dê um exemplo de dois 

retângulos que não são 

semelhantes.

PENSE NISTO:
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2,5 cm

3 cm

4 cm

1,25 cm

2 cm

1,5 cm

EXEMPLO 4

Dois blocos retangulares (paralelepípedos retângulos) serão semelhantes somente se as razões 
entre as três dimensões (tomadas, por exemplo, em ordem crescente) de um deles e as correspon-
dentes dimensões do outro forem sempre iguais.

1  2

A razão de semelhança entre os paralelepípedos 1  e 2  é 2,5 cm
1,25 cm

 5

5 3 cm
1,5 cm

 5 4 cm
2 cm

 5 2.

Logo, eles são semelhantes.

Sim, porque, se um 
cubo tem aresta a e 
o outro tem aresta b, 
quaisquer dois segmentos 
correspondentes que se 
tome, um em cada cubo, 

estarão na razão a
b

.

PENSE NISTO:

Dois cubos quaisquer são 
sempre semelhantes?

EXERCÍCIOS

1  Indique quais das seguintes afirmações são ver-

dadeiras e quais são falsas.

 a) Dois retângulos quaisquer são semelhantes.

 b) Dois círculos quaisquer são semelhantes.

 c) Dois triângulos retângulos quaisquer são se-

melhantes.

 d) Dois triângulos equiláteros quaisquer são se-

melhantes.

 e) Dois trapézios retângulos quaisquer são seme-

lhantes.

 f) Dois losangos quaisquer são semelhantes.

2  Dois retângulos, R1 e R2, são semelhantes. As 

medidas dos lados de R1  são 6 cm e 10 cm. 

Sabendo que a razão de semelhança entre R1 

e R2, nessa ordem, é 2
3

, determine as medidas 

dos lados de R2.

3  Dois triângulos retângulos distintos possuem um 

ângulo de 48° e lados com medidas proporcio-

nais. É correto afirmar que eles são semelhan-

tes? Explique.

4  Quais são as medidas dos lados de um quadrilá-

tero A'B'C'D' com perímetro de 17 cm, semelhante 

ao quadrilátero ABCD da figura? 

A

B

12 cm

33 cm

22 cm

18 cm

C

D

5  Dois triângulos isósceles distintos possuem um 

ângulo de 40°. É correto afirmar que eles são 

semelhantes? Explique.

6  No bloco retangular a seguir, o comprimento 

mede 8 cm, a largura 2 cm e a altura 6 cm.

A razão de semelhança entre esse bloco e um 

outro nessa ordem é 1
3

. Quais são as dimensões 

do outro bloco?

8 cm

2 cm

6 cm

EXERCÍCIOS FAÇA NO 
CADERNO
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C
A

SA
 D

E 
TI

PO
S

A

1,5 cm 2,2 cm

2,5 cmB C

E F

D

3,0 cm 4,4 cm

5,0 cm

E F

D

A

3,0 cm

1
,5

 c
m

5,0 cm

2,5 cm

4,4 cm2,2 cm

B C

7  As duas figuras abaixo são semelhantes.

6 m
5 m

9 m

4 m
y

t

2,1 m

7,5 m

w

z

3 m
x

 Obtenha os valores de x, y, z, w e t.

 8   Um prospecto de propaganda imobiliária traz as 
posições das torres A, B, C e D de apartamentos, 
que serão construídos em um grande terreno 
plano.

   Um cliente, interessado em conhecer essas dis-
tâncias, mediu com uma régua os segmentos 

AB, BC, CD e AD, obtendo, respectivamente,
2 cm, 4 cm, 5 cm e 2,7 cm.

   Em seguida, ele verificou, no prospecto, que a 
escala utilizada era de 1 ; 2 000.

   Que valores ele obteve para as distâncias reais 
entre as torres A e B, B e C, C e D, e A e D?

 Semelhança de triângulos

Observe os triângulos ABC e DEF, construídos de modo a terem a mesma forma.

É possível colocar o triângulo menor (ABC) dentro do maior (DEF), de maneira 
que seus lados fiquem respectivamente paralelos.

Observe que:

 A $ D B $ E C $ F

Usaremos em toda a 
coleção a notação AB 
para representar a 
medida de um segmen-
to AB (segmento de 
extremidades A e B).

OBSERVAÇÃO

A B

D C
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A

B Ca

c b

D

E Fd

f e

Em símbolos matemáticos, podemos escrever:

A $ D

B $ E  e  
a

d
 5 

b

e
 5 

c

f
C $ F

0ABC / 0DEF C

Símbolos
/ : semelhante
$ : congruente

Se calcularmos as razões entre os lados correspondentes, teremos:

AB

DE
 5 

1,5 cm

3,0 cm
 5 

1

2
            

AC

DF
 5 

2,2 cm

4,4 cm
 5 

1

2
            

BC

EF
 5 

2,5 cm

5,0 cm
 5 

1

2

Logo, as razões são todas iguais, ou seja, os lados correspondentes (homólogos) são proporcionais.

AB

DE
 5 

AC

DF
 5 

BC

EF

Daí, podemos estabelecer a seguinte definição:

Dois triângulos são semelhantes se seus ângulos correspondentes são congruentes e os lados homó-

logos são proporcionais.

Se dois triângulos, ABC e DEF, são semelhantes e 
a razão de semelhança é 1, então os triângulos 
possuem lados respectivamente congruentes e, 
consequentemente, os triângulos são congruentes.

PENSE NISTO:

O que ocorre quando 

a razão de semelhança 

de dois triângulos é 

igual a 1?

 Razão de semelhança

Se dois triângulos são semelhantes, a razão entre as medidas dos lados correspondentes é chamada 

razão de semelhança. Nos triângulos ABC e DEF, que estão logo acima:

a

d
 5 

b

e
 5 

c

f
 5 k, em que k é a razão de semelhança.

O conceito de triângulos semelhantes fixou as seguintes condições 

para um triângulo ABC ser semelhante a outro A'B'C':

A $ A', B $ B', C $ C' e     
AB

A'B'
 5 

AC

A'C'
 5 

BC

B'C'
três congruências

de ângulos proporcionalidade
dos três lados

Mas podemos reduzir essas exigências a uma quantidade menor. Os casos de 

semelhança (ou critérios de semelhança), que estudaremos a seguir, mostram 

quais são as condições mínimas para dois triângulos serem semelhantes.

Para demonstrar a validade dos critérios de semelhança, precisamos rever o teorema de Tales e o 

teorema fundamental da semelhança.

Ao observar, na figura ao lado, um feixe de retas paralelas com 

duas transversais t
1
 e t

2
, podemos dizer que:

•	são correspondentes os pontos: A e A', B e B', C e C', D e D';

•	são correspondentes os segmentos: AB e A'B', CD e C'D', AC 

e A'C' etc.

A

B

C

D

A'

B'

C'

D'

t
1

t
2
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A

B

p vezes x

q vezes x

x
x
x
x
x

x
x
x
x
x
x

C

D

A'

B'

C'

D'

t
1

t
2

 Teorema de Tales

Se duas retas são transversais a um feixe de retas paralelas, então a ra-
zão entre as medidas de dois segmentos quaisquer de uma delas é igual à 
razão entre as medidas dos segmentos correspondentes da outra.

Considerando a figura na página anterior, a tese é: AB
CD

 5 A'B'
C'D'

.

Vamos fazer a demonstração supondo que AB e CD são segmentos comensuráveis, isto é, existe um seg-
mento de medida x que é submúltiplo de AB e de CD, ou seja, existem números inteiros p e q de modo que 
AB 5 p ? x e CD 5 q ? x, como mostra a figura (neste caso, temos p 5 5 e q 5 6).

Temos:
AB 5 p ? x
CD 5 q ? x

Estabelecendo a razão 
AB
CD

 5 
p ? x
q ? x

 V AB
CD

 5 
p
q

 1

Conduzindo retas do feixe (paralelas a AA') pelos pontos de divisão de AB e CD (veja linhas tracejadas 
na figura), observamos que:

•	O segmento A'B' fica dividido em p segmentos con-

gruentes, cada um com medida x':

A'B' 5 p ? x'

•	O segmento C'D' fica dividido em q segmentos con-

gruentes, cada um com medida x':

C'D' 5 q ? x'

Estabelecemos a razão A'B'
C'D'

 5 
p ? x'
q ? x'

 V A'B'
C'D'

 5 
p
q

 2

Comparando 1  e 2 , temos: AB
CD

 5 A'B'
C'D'

.

Pode-se mostrar que o teorema de Tales também é válido no caso em que AB e 

CD são incomensuráveis, isto é, quando não existe submúltiplo comum de AB e CD.

Na figura abaixo, as retas r, s e t são paralelas. Vamos calcular o valor de x.

Observe que o segmento A'B' mede, em metros, 
x 2 9.
Aplicando o teorema de Tales, segue que:
AB
BC

 5 A'B'
B'C'

 V 4
6

 = x 2 9
9

 V 6x 5 90 V x 5 15

Logo, x 5 15 m.

A

B

p vezes x'

q vezes x'

x'
x'

x'
x'

x'

x'
x'

x'
x'

x'
x'

C

D

A'

B' C'

D'

t
1

t
2

A

B

4 m

6 m

9 mx

C

r

s

t

A'

B'

C'

EXEMPLO 5

É importante que os estudantes compreendam que, ao usar o 
teorema de Tales, é possível escolher quaisquer dois segmentos 
de uma transversal (e não apenas segmentos adjacentes). Na 
proporção dada, 
consideramos a razão
AC
BC

 e a correspondente A'C'
B'C'

.

Um estudante utilizou a 

proporção 
10
6

 5 x
9

 para 

solucionar o problema 

do exemplo 5.

Comente essa estratégia.

PENSE NISTO:
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A

D

B C

E

A

D

B C

E

F

paralelogramo

 Teorema fundamental da semelhança

Toda reta paralela a um lado de um triângulo, que intersecta os outros dois lados em pontos distintos, 

determina um novo triângulo semelhante ao primeiro.

Vamos comprovar a validade deste teorema.

Hipótese: DE // BC (D O AB e E O AC)

Tese: 0ADE / 0ABC

Demonstração:

Considerando os triângulos ADE e ABC e o paralelismo de 

DE e BC, temos:

D $ B        e        E $ C

Então, os triângulos ADE e ABC têm os ângulos ordenadamente congruentes:

D $ B, E $ C e A é comum       1

Sendo DE // BC e aplicando o teorema de Tales nas transversais AB e AC, temos:

Pelo ponto E, vamos conduzir EF, paralela a AB.

A

D

B C

EAD

AB
 5 

AE

AC
       2

Sendo EF // AB e aplicando o teorema de Tales, temos: 
AE

AC
 5 

BF

BC
.

Mas BF $ DE, pois BDEF é um paralelogramo; vamos então substituir BF por DE na proporção anterior:

AE

AC
 5 

DE

BC
      3

Comparando 2  e 3 , resulta:

AD

AB
 5 

AE

AC
 5 

DE

BC
      4
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C

A

D E

4

9

12

B

A'

B' C'

 Critérios de semelhança

 AA (ângulo — ângulo)

Observe os triângulos ABC e A'B'C', com dois ângulos respectivamente 

congruentes:

A $ A'        e        B  $ B'

Se AB $ A'B', então 0ABC $ 0A'B'C' e, daí, 0ABC / 0A'B'C'.

Vamos supor que os triângulos não sejam congruentes e que 

AB . A'B'.

Tomemos D em AB, de modo que AD $ A'B', e por D tra-

cemos DE // BC.

Pelo caso de congruência ALA, os triângulos ADE e 

A'B'C' são congruentes:

0ADE $ 0A'B'C'

Professor, se julgar necessário, 
revise os casos de congruência de 
triângulos.

EXEMPLO 6

Na figura ao lado, DE é paralelo a AB. Vamos calcular a 

medida dos segmentos CB e CE.

Sendo DE // AB, temos: 0CDE / 0CAB.

Daí, segue que:

CD

CA
 5 

CE

CB
 5 

DE

AB
 5 

9

12
 V 

CE

CB
 5 

9

12
 V

V 
CE

CE 1 4
 5 

9

12
 V CE 5 12

CB 5 CE 1 4 5 12 1 4 5 16

Concluímos, assim, que os triângulos ADE e ABC têm ângulos congruentes (veja 1 ) e lados pro-

porcionais (veja 4 ). Logo, eles são semelhantes:

0ADE / 0ABC

Daí concluímos a validade do teorema fundamental da semelhança.

A

D E

B C

A

B C



CAPÍTULO 10202

A

c

b

aB C

A'

B' C'a'

c'

b'

Pelo teorema fundamental da semelhança os triângulos ADE e ABC são semelhantes:

0ADE / 0ABC

Então, os triângulos A'B'C' e ABC também são semelhantes:

0A'B'C' / 0ABC

Se dois triângulos possuem dois ângulos respectivamente 

congruentes, então os triângulos são semelhantes.

 LAL (lado — ângulo — lado)

Se dois triângulos têm dois lados correspondentes proporcionais e os ângulos 

compreendidos são congruentes, então os triângulos são semelhantes. 

Observe a demonstração considerando os dois triângulos, ABC e A'B'C', tais que:

V 0ABC / 0A'B'C'
c

c'
 5 

b

b'

A $ A'

Vamos supor que os triângulos ABE e A'B'C' não sejam congruentes e que AB . A'B'.

Tomemos D em AB, de modo que AD $ A'B', e por D tracemos DE // BC.

A

c

c'

a' b

aB

D
E

C

Note que, pelo teorema fundamental da semelhança:

0ABC / 0ADE

Agora, precisamos mostrar que 0ADE $ 0A'B'C'.

Como os triângulos ABC e ADE são semelhantes, temos:

AD

AB
 5 

AE

AC
 V 

c'

c
 5 

AE

b

Pela hipótese 
c'

c
 5 

b'

b
, temos que AE 5 b', e portanto AE $ A'C'.

Logo, pelo caso de congruência LAL:

0ADE $ 0A'B'C'

Como 0ABC / 0ADE e 0ADE $ 0A'B'C', então 0ABC / 0A'B'C'.
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B

D

c

c'
a'

a

A C

b

E

A C

B

b

c a

A' C'

B'

c'

b'

a'

60°

70°

G

H I

60°

K

L

J70°

 LLL (lado — lado — lado)

Se dois triângulos têm os lados correspondentes 

proporcionais, então os triângulos são semelhantes. 

Considere os triângulos ABC e A'B'C' tais que:

Vamos supor que os triângulos ABC e A'B'C' não sejam congruentes e que AB > A'B'.

Tomemos D em AB, de modo que AD $ A'B', e por D tracemos DE // BC.

Note que, pelo teorema fundamental da semelhança:

0ABC / 0ADE

Agora, precisamos mostrar que 0ADE $ 0A'B'C'.

Já sabemos que AD $ A'B'. Como os triângulos ABC e ADE são 

semelhantes, temos:

DE

BC
 5 

AE

AC
 5 

AD

AB
 V 

DE

a
 5 

AE

b
 5 

c'

c
 

Pela hipótese 
a'

a
 5 

b'

b
 5 

c'

c
, temos:

•	DE = a', e portanto DE $ B'C'.

•	AE = b', e portanto AE $ A'C'.

Logo, pelo caso de congruência LLL:

0ADE $ 0A'B'C'

Como 0ABC / 0ADE e 0ADE $ 0A'B'C', então 0ABC / 0A'B'C'.

EXEMPLO 7

Observe os dois triângulos ilustrados. 

Temos:

G $ J  e I  $ L

Então, pelo critério AA de semelhança, 

0GHI / 0JKL e, em consequên cia, seus 

lados homólogos são proporcionais:

GH

JK
 5 

GI

JL
 5 

HI

KL

a

a'
 5 

b

b'
 5 

c

c'
 V 0ABC / 0A'B'C'
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1  Sabe-se que AE // CD. Quais são as medidas x de AB 

e y de CD?

  Solução:

Como AE // CD, há dois pares de ângulos alternos 

internos congruentes:

BAE $ BCD  e  BEA $ BDC

Há também ABE $ CBD (ângulos opostos pelo vér-

tice). Assim, temos 0ABE ~ 0CBD.

Podemos escrever a proporcionalidade entre as me-

didas dos lados homólogos:

AB

CB
 5 

AE

CD
 5 

BE

BD
 V 

x

4,5
 5 

1,6

y
 5 

2

6

Temos, então, x 5 
2 ? 4,5

6
, isto é, x 5 1,5 cm, além de y 5 

6 ? 1,6

2
, ou seja, y 5 4,8 cm.

EXERCÍCIO RESOLVIDO

A

E

B

2 cm1,6 cm

x

6 cm

4,5 cm

y

D

C

9  Em cada caso, as retas r, s e t são paralelas. Determine os valores de x e y:

 a)   c) 

EXERCÍCIOS FAÇA NO 
CADERNO

r

s

t

4

6

x

5

x

r s t

4

3

x

r

s

x

y
6

5

3

2
t

10  Três terrenos têm frentes para a rua A e para a rua B, como mostra a figura. As divisas laterais são perpen-

diculares à rua A. Qual é a medida da frente para a rua B de cada lote, sabendo que a frente total para essa 

rua mede 180 m?

Lote I

40 m

Lote II

Rua B

Rua A

30 m

Lote III

20 m

b)
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11  São dados oito triângulos. Indique os pares de 

triângulos semelhantes e o critério de semelhança 

correspondente:

13  Numa certa hora do dia, um prédio de 48 m de 

altura projeta no solo uma sombra de 10 m de 

comprimento.

 a) Qual é o comprimento da sombra projetada 

por um prédio de 18 m de altura, situado na 

mesma rua, supondo-a plana e horizontal?

 b) Em outra hora do dia, a sombra do prédio 

menor diminuiu 50 cm em relação à situação 

anterior. Em quanto diminuirá a sombra do 

prédio maior?

8

6

4
y

4

x

6

3

5

4
x

y

12   Determine x e y nas figuras, nas quais os ângulos as-

sinalados com a mesma marcação são congruentes.

 a) b) 

B

E

A

D

C

15  Uma rampa de inclinação constante tem 90 m de 

extensão e seu ponto mais alto se encontra a 8 m 

do solo.

 a) Saindo do solo, uma pessoa se desloca sobre 

a rampa, atingindo um ponto que se encontra 

a 2 m de altura em relação ao solo. Quantos 

metros ainda faltam para a pessoa chegar ao 

ponto mais alto?

 b) Saindo do ponto mais alto da rampa, uma 

pessoa desce 20 m da rampa, chegando a um 

ponto S. A que altura S está em relação ao solo?

16  Sendo DE // BC, determine x nos casos:

 a) b) 

30°

50°

50°

5

6

4 8

30°

50°
3

7

2 6

1 5

14  Determine DE, sendo AB // CD, BE 5 4 cm, 

EC 5 8 cm e AC 5 11 cm.

B

D

6 cm

3 cm 8 cm

x

E

C

A E

C

AD B

x

10 m

27 m
36 m

17  Determine a medida de AB em cada caso:

 a) C

X

Y 3 B

2

A

4

 b) D E

C

5

2

BA

2

3

4

5

8

10

6

2,5

350°
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20  A figura representa três ruas paralelas (I, II e III) 

de um condomínio. A partir do ponto P, deseja-se 

puxar uma extensa rede de fios elétricos, conforme 

indicado pelos segmentos PR, PT, QS e RT.

Q S

R T

I

II

III

P

Sabe-se que a quantidade de fio (em metros) usada 

para ligar os pontos Q e R é o dobro da quantidade 

necessária para ligar os pontos P e Q. Determine 

quantos metros de fio serão usados para ligar Q 

e S, se de R a T foram usados 84 m.

21  Na figura abaixo, AD é perpendicular a BC.

2 cm 3 cmD

A

B C

 a) Explique por que os triângulos ABD e CAD são 

semelhantes.

 b) Qual é a medida de AD?

 c) 

A

D C

B

10

a

a

4

18  Determine a razão entre os perímetros dos tri-

ângulos ABC e ADE, nesta ordem, sabendo que 

r // s.
A

2 cm

4 cm5 cm

6 cm

B C

D E

r

s

19  Determine a medida do lado do quadrado AEDF da 

figura:
C

A

E
4 cm

F

6 cm

B

D

 Consequências da semelhança de triângulos

 Primeira consequência

Utilizando os critérios de semelhança, podemos provar que, se a razão de semelhança entre dois triângulos 

é k, então:

•	a razão entre duas alturas homólogas é k;

•	a razão entre duas medianas homólogas é k;

•	a razão entre duas bissetrizes homólogas é k;

•	a razão entre as áreas é k2.

Vamos provar a última afirmação. Seja 0ABC / 0DEF.

B P C

A

D

E Q F

Temos:
AB

DE
 5 

BC

EF
 5 

CA

FD
 5 k

Para esta demonstração, será necessário 
relembrar que a área de um triângulo 

é calculada por 1
2

 ? b ? h. Para mais 

detalhes, veja o capítulo 12, no qual será 
feito o estudo completo e detalhado 
sobre áreas de superfícies planas. 
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A

M

B C

N
r // BC

Consideremos as alturas homólogas AP e DQ. Os triângulos ABP e DEQ também são semelhantes (pelo 

critério AA), pois B $ E e P $ Q.

Então:
AB

DE
 5 

AP

DQ
, portanto 

AP

DQ
 5 k (razão de semelhança entre duas alturas homólogas)

Daí, temos:

área 0ABC: S
1
 5 

BC ? AP

2

área 0DEF: S
2
 5 

EF ? DQ

2

V 
S

1

S
2

 5 
BC ? AP

EF ? DQ
 5 

BC

EF
 ? 

AP

DQ
 5 k ? k 5 k2

 Segunda consequência

Se um segmento une os pontos médios de dois lados de um triângulo, então ele é paralelo ao terceiro 

lado e é metade do terceiro lado. Veja a justificativa dessa propriedade.

Observe o triângulo ABC da figura em que M e N são os pontos médios de AB e AC, respectivamente.
A

M

B C

N

Observe os triângulos AMN e ABC. Eles têm o ângulo A em comum e 
AM

AB
 5 

AN

AC
 5 

1

2
.

De acordo com o critério LAL de semelhança, temos:

0AMN / 0ABC

e, portanto, M $ B, N $ C e MN

BC
 5 1

2
.

Assim, podemos concluir que MN // BC e MN 5 
BC

2
.

 Terceira consequência

Se, pelo ponto médio de um lado de um triângulo, traçarmos uma reta 

paralela a outro lado, ela encontrará o terceiro lado em seu ponto médio.

Veja a justificativa dessa propriedade.

Observe a figura ao lado: tomamos um triângulo ABC e marcamos M, 

ponto médio do lado AB. Em seguida, traçamos por M a reta r, paralela 

ao lado BC.

Pelo teorema fundamental da semelhança, temos 0AMN / 0ABC;  

portanto, 
AM

AB
 5 

AN

AC
 5 

MN

BC
 5 

1

2
, ou seja, N é o ponto médio de AC, 

e MN é a metade de BC.

2  Na figura ao lado, RS é paralelo a TV:

 a) Determine o valor de x.

 b) Sendo S
1
 a área do triângulo PRS e S

2
 a área do 

triângulo PTV, encontre uma relação entre S
1
 e S

2
.

P

R

4 x

8

T

18

V

S

EXERCÍCIO RESOLVIDO
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  Solução:

Como RS // TV, os triângulos PRS e PTV são semelhantes.
 a) Escrevendo a razão de semelhança entre os lados dos triângulos PRS e 

PTV, temos: 
PR
PT

 5 
PS
PV

 V 
4

4 1 8
 5 

x
18

 V x 5 6

 b) Como a razão de semelhança entre os lados dos triângulos PRS e 

PTV é 
1
3 , nessa ordem, concluímos que a razão entre suas áreas é 

1
3

2

 5 
1
9

, isto é, 
S1

S2

 5 
1
9

.

PENSE NISTO:

Na figura do exercício 
resolvido, qual é a 
razão entre a área do 
trapézio RSVT e a área 
do triângulo PRS?

22  As medidas dos lados de um triângulo ABC são 
5,2 cm, 6,5 cm e 7,3 cm. Seja MNP o triângulo cujos 
vértices são os pontos médios dos lados de ABC.

 a) Qual é o perímetro de MNP?
 b) Prove que MNP é semelhante a ABC.

23  Na figura, DE é paralelo a BC.
 a) Qual é a razão de 

semelhança dos tri-
ângulos ADE e ABC, 
nessa ordem?

 b) Qual é a razão entre 
os perímetros dos tri-
ângulos ADE e ABC,
nessa ordem?

 c) Qual é a razão entre as áreas dos triângulos 
ADE e ABC, nessa ordem?

 d) Se a área do triângulo ADE é 6 cm2, qual é a 
área do triângulo ABC?

EXERCÍCIOS FAÇA NO 
CADERNO

24  Na figura, AB é paralelo a DE. 
Sabendo que AB 5 5 cm, 
h1 5 3 cm e DE 5 10 cm, 
determine:

 a) h2;

 b) as áreas dos triângulos 
ABC e CDE.

25  Dois triângulos equiláteros, T1 e T2, têm perímetros 
de 6 cm e 24 cm. Qual é a razão entre a área de 
T2 e de T1?

26  Na figura, AB // ED, DE 5 4 cm, e as áreas dos 
triângulos ABC e EDC 
valem, respectivamen-
te, 36 cm2 e 4 cm2. 
Quanto mede AB?

A B

ED

h
2

h
1

C

20 cm

3 cm

9 cm

4 cm 12 cmA E C

B

D 5 cm

A

B
C D

E

 O triângulo retângulo

Todo triângulo retângulo, além do ângulo reto, possui dois ângulos (agudos) complementares.
O maior dos três lados do triângulo é o oposto ao ângulo reto e chama-se hipotenusa; os outros dois 

lados são os catetos.

 Semelhanças no triângulo retângulo

Traçando a altura AD, relativa à hipotenusa de um triângulo retângulo ABC, obtemos dois outros tri-
ângulos retângulos: DBA e DAC. Observe as figuras:

A

B D C

1 2
ˆ ˆ

A

B D

1̂ 2̂

A

D C

Os ângulos 1̂  e 2̂  são complementares, 
ou seja, a soma é 90º.

O ângulo BÂD é complemento do 
ângulo 1̂ . Então, BÂD $ 2̂  .

O ângulo DÂC é complemento 
do ângulo  2̂  . Então, DÂC $ 1̂ .

Reunindo as conclusões, vemos que os triângulos ABC, DBA e DAC têm os ângulos respectivos con-
gruentes e, portanto, são semelhantes: 0ABC / 0DBA / 0DAC

A área do triângulo PRS é 1
9

 da área do triângulo PTV, então a área do trapézio RSVT é 8
9

 da 

área do triângulo PTV. Assim, a razão pedida é 

8
9
1
9

 5 8.
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A

B D

A

D C

A

B
D

C

a

c b
// c h h

b

mn

A

B D

A

D C

A

B
D

C

a

c b
h // c h h

b

mn

 Relações métricas

Voltemos ao triângulo ABC, retângulo em A , com a altura AD. Os segmentos BD e DC também são 

chamados de projeções dos catetos sobre a hipotenusa.    

n: medida da projeção  

de AB  sobre BC .

m: medida da projeção  

de AC  sobre BC .

Explorando a semelhança dos triângulos, temos que:

0ABC / 0DBA V a

c
 5 c

n
 V c2 5 a ? n          1

0ABC / 0DAC V a

b
 5 b

m
 V b2 5 a ? m         2

0DBA / 0DAC V h

m
 5 n

h
 V h2 5 m ? n         3

As relações 1 , 2  e 3  são importantes relações métricas no triângulo retângulo. Em qualquer 

triângulo retângulo, temos, portanto:

•	O quadrado da medida de um cateto é igual ao produto das medidas da hipotenusa e da projeção 

desse cateto sobre a hipotenusa, isto é:

b2 5 a ? m     e    c2 5 a ? n

•	O quadrado da medida da altura relativa à hipotenusa é igual ao produto das medidas dos segmentos 

que ela determina na hipotenusa:

h2 5 m ? n

Das relações 1 , 2  e 3  decorrem outras, entre as quais vamos destacar duas:

Multiplicando membro a membro as relações 1  e 2  e depois usando a 3 , temos:

b2 5 a ? m

c2 5 a ? n  V b2 ? c2 5 a2 ? m ? n V b2 ? c2 5 a2 ? h2 V b ? c 5 a ? h

•	Em qualquer triângulo retângulo, o produto das medidas dos catetos é igual ao produto das medidas 

da hipotenusa e da altura relativa a ela:

b ? c 5 a ? h

Somando membro a membro as relações 1  e 2  e observando que m 1 n 5 a, temos:

b2 5 a ? m

c2 5 a ? n
 

V b2 1 c2 5 a ? m 1 a ? n  V b2 1 c2 5 a ? ( m 1 n ) V b2 1 c2 5 a2

a

3
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D C

A

d
&

&

&

& B

A

B CM

h &

&

2

•	Em qualquer triângulo retângulo, a soma dos quadrados das medidas dos catetos é igual ao quadrado 

da medida da hipotenusa.

b2 1 c2 5 a2

Essa última relação é conhecida como teorema de Pitágoras.

Sejam 2 cm e 3 cm as medidas das projeções dos catetos de um 

triângulo retângulo sobre a hipotenusa (veja a figura). Vamos calcular 

as medidas dos catetos.

Podemos fazer:

3 : h2 5 2 ? 3 V h 5 6

Como o triângulo ABH é retângulo, vale o teorema de Pitágoras:

c2 5 22 1 h2 5 4 1 6 5 10 V c 5 10

Logo, o cateto BA mede 10 cm.

No triângulo ACH, que é retângulo, temos:

b2 5 h2 1 32 5 6 1 9 5 15 V b 5 15

Logo, o cateto AC mede 15 cm.

EXEMPLO 8

A

B H

c b
h

2 cm 3 cm C

Utilizando as relações métricas no 
triângulo retângulo: 
c2 5 a ? n e b2 5 a ? m

c2 5 (2 1 3) ? 2 5 10 V c 5 10

b2 5 (2 1 3) ? 3 5 15 V b 5 15 

No triângulo equilá-

tero, a altura relativa 

a um lado é também 

mediana e bissetriz.

OBSERVAÇÃO

 Aplicações notáveis do teorema de Pitágoras

1a) Diagonal do quadrado

Consideremos um quadrado ABCD cujo lado mede &. Vamos encontrar a 

medida da diagonal d do quadrado em função de &.

Basta aplicar o teorema de Pitágoras a qualquer um dos triângulos destacados:

d2 5 &2 1 &2 5 2&2

d 5 & 2

Assim, por exemplo, se o lado de um quadrado mede 10 cm, sua diagonal 

medirá 10 2 cm (aproximadamente 14,1 cm).

2a) Altura do triângulo equilátero

Consideremos um triângulo equilátero ABC cujo lado mede &. Vamos ex-

pressar a medida da altura h do triângulo em função de &.

Basta aplicar o teorema de Pitágoras ao triângulo destacado:

h2 1 
&

2

2 

5 &2 V h2 5 &2 2 
&

2

2

h2 5 &2 2 
&2

4

 

5 
3&2

4

h 5 
& 3

2

Assim, por exemplo, em um triângulo equilátero com lado de 6 cm, a altura rela-

tiva a qualquer um dos lados mede 6 3

2
 cm 5 3 3 cm (aproximadamente 5,2 cm).

De que outro modo po-

deríamos ter calculado 

as medidas dos catetos 

de ABC?

PENSE NISTO:
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1 x

y

5 3

2

x

y

Pitágoras de Samos

Pitágoras nasceu na ilha grega de Samos, por 
volta de 565 a.C.

Sua obra, depois continuada pelos discípulos, 
foi de enorme importância para o desenvolvimen-
to da Matemática. Várias foram as contribuições 
da escola pitagórica, responsável por avanços na 
área do raciocínio lógico-dedutivo. Pitágoras deu 
também grandes contribuições ao desenvolvi-
mento da Aritmética.

O teorema que leva seu nome já teve centenas 
de demonstrações diferentes. Observe a demons-
tração a seguir.

Tomemos o quadrado ABCD abaixo represen-
tado, de lado a 1 b.

A B

D Cb F

E

a

a

b

a

G

b

c

c

Podemos dividi-lo em dois trapézios con-
gruentes pelo segmento EF: o trapézio AEFD e o 
trapézio EBCF. A área S do trapézio AEFD pode 
ser calculada de duas maneiras:

Como metade da área do quadrado ABCD:

S 5 
(a 1 b)(a 1 b)

2

Como a soma das áreas dos triângulos AEG, 
EGF e GFD:

S 5 
ab
2

 1 
cc
2

 1 
ab
2

Então:

(a 1 b)(a 1 b) 5 ab 1 cc 1 ab

e daí resulta:

a2 1 b2 5 c2

Essa demonstração se deve a James Abram 
Garfield (1831-1881), vigésimo presidente dos 
Estados Unidos.

Fonte de pesquisa: ROSA, Euclides. Mania de Pitágoras. RPM/Estágio OBMEP, 2007. p. 34-39. 
Disponível em: <www.obmep.org.br/docs/rpm_pic2007.pdf>. Acesso em: 7 mar. 2016.

UM POUCO DE HISTÓRIA

H
ER

IT
A

G
E 

IM
A

G
ES

/D
IO

M
ED

IA
/C

O
LE

Ç
Ã

O
 P

A
RT

IC
U

LA
R

Pitágoras desenhando na areia o teorema 
que hoje leva o seu nome. Gravura de autor 
desconhecido, 1833.

27  Sabendo que AB // CD, determine x e y.
A

B D y

8 2 x

x
C

6

4

E

28  Determine x e y nas figuras:

 a)  b)

1 x

y

5

EXERCÍCIOS FAÇA NO 
CADERNO

3

2

x

y
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 c) 

29  A parte final de uma escada está representada na 

figura seguinte:

1,6 m

B

D E
r

s

t

C

A

Um imprevisto na fase de construção fez com que 

a extensão do penúltimo degrau fosse o dobro da 

extensão do último. Considerando as retas r, s e 

t paralelas e AE 5 6 m, determine a extensão de 

cada um desses degraus.

30  Para vencer um desnível de 9 m entre dois pisos 

de um shopping foi construído um elevador e 

uma rampa suave para possibilitar o acesso de 

cadeirantes ou pessoas com mobilidade reduzida, 

como mostra a figura:

solo nível 2B

A

solo nível 1

elevador

50 m

O elevador sobe verticalmente 5 m, chegando ao pon-

to A. De A inicia-se o percurso sobre a rampa de baixa 

inclinação até se chegar ao ponto B, no outro nível.

Use uma calculadora para determinar o compri-

mento aproximado da rampa (por excesso), com 

erro inferior a 0,01.

31  Determine o valor de x em cada caso:

 a) 

x

17 cm

15 cm

 b) 6 cm
x

9 cm

12 cm

 c) x

4 cm

 d) 

6 cm

x

32  Quanto medem os catetos e a altura relativa à 

hipotenusa de um triângulo, sabendo que essa 

altura determina, sobre a hipotenusa, segmentos 

de 3 cm e 5 cm?

33  Uma piscina com a forma de um paralelepípedo 

retângulo tem 40 m de comprimento, 20 m de 

largura e 2 m de profundidade. Que distância 

percorrerá alguém que nade na superfície, em linha 

reta, de um canto ao canto oposto dessa piscina?

Use 5  A 2,23.

34  A figura mostra o perfil de uma escada, formada 

por seis degraus idênticos, cada um com 40 cm de 

largura. A distância do ponto mais alto da escada ao 

solo é 1,80 m. Qual é a medida do segmento AB?

A

B

40 cm1,80 m

35  Saindo de um ponto O, um robô caminha, em 

linha reta e sucessivamente, 10 m na direção Sul, 

3 m na direção Leste, 6 m na direção Norte e, 

de lá, retorna em linha reta ao ponto de partida. 

Quantos metros o robô percorreu ao todo?

36  Em certo trecho de um rio, as margens são paralelas. 

Ali, a distância entre dois povoados situados na mes-

ma margem é de 3 000 m. Esses povoados distam 

igualmente de um farol, situado na outra margem do 

rio. Sabendo que a largura do rio é 2 km, determine 

a distância do farol a cada um dos povoados.

y

4

x

4 5
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37  No portão retangular da casa de Horácio foi ne-

cessário colocar, diagonalmente, um reforço de 

madeira (ripa) com 3 m de comprimento. Sabendo 

que a altura do portão excede em 60 cm seu com-

primento, determine as dimensões desse portão.

38  O perímetro de um quadrado é 36 cm. Qual é a 

medida da diagonal desse quadrado?

39  A altura de um triângulo equilátero mede 6 3 m. 

Qual é o perímetro desse triângulo?

40  Calcule x em:

 a) 

39

15

26
x

 b) 

12
x

12

8

 c) 7

12

x

13

 d) x 1 2

10

6 33

41  Para ajudar nas festas juninas de sua cidade, Paulo 

esticou completamente um fio de bandeirinhas, com 

3,5 m de comprimento, até o topo de um poste com 

4,5 m de altura. Sabendo que Paulo tem 1,70 m 

de altura, a que distância ele ficou do pé do poste?

4,5 m

1,70 m

3
,5

 m

Z
A

P
T

42  Dois grupos de turistas partem simultaneamente 

da entrada do hotel em que estão hospedados. 

O primeiro grupo segue na direção leste, rumo 

a um monumento distante 800 m do ponto de 

partida. O segundo parte na direção norte, rumo a 

um museu situado a 1 000 m do ponto de partida.

R
A

FA
E
L 

N
E
D

D
E
R
M

E
Y
E
R
/F

O
TO

A
R
E
N

A

Paraty, Rio de Janeiro, 2013.

 a) Qual é, em linha reta, a distância, em metros, 

entre o monumento e o museu?

 b) Supondo que os dois grupos caminham a 

uma velocidade constante de 2 km/h, qual é 

a distância, em metros, entre os dois grupos 

15 minutos após a partida?

Na figura, o quadrado DEFG está inscrito no triângulo ABC. Sendo BD 5 8 cm e

CE 5 2 cm:

 a) calcule o perímetro do quadrado.

 b) determine a menor distância entre o ponto A e a reta BC.

DESAFIO

B D E

F

A

G

C


